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ABSTRACT :  A modular, scalable architecture for use on unmanned vehicles has been 
developed at the Center for Intelligent Machines and Robotics under the direction of the 
Air Force Research Laboratory at Tyndall Air Force Base, FL.  This state of the art 
architecture isolates five functionally cohesive sub-tasks into self-contained modules with 
well defined interfaces.  The architecture consists of a Mobility Control Unit (MCU), 
Path Planner (PLN), Position System (POS), Detection and Mapping System (DMS), and 
a Primitive Driver (PD).  The design considerations for the development of this 
architecture included sub-system modularity, implementation independent software 
interfaces, ability to expand system functionality through continued addition of modules 
(scale), and the goal of moving toward a standard architecture for autonomous systems.  
The focus of this paper is to present a modular architecture that addresses the above 
design considerations. 
 
One particularly noteworthy aspect of the architecture is the use of propulsive and 
resistive wrench commands that are communicated to the Primitive Driver component to 
specify desired vehicle motion.  The advantage of this approach is that a standard 
command can be used to communicate with a wide variety of vehicles such as steered-
wheeled, tracked, or omni-directional.  It is not necessary to have vehicle specific 
commands included in the architecture such as ‘steering wheel angle’, ‘throttle position’, 
‘left-track velocity’, and ‘right-track velocity’.  Without the use of the propulsive and 
resistive wrench commands, the number of needed commands was potentially limitless 
with only a small subset of commands actually be applicable to a particular vehicle. 
 
The architecture has been validated by implementing it on three mobile platforms, i.e. a 
steered wheel vehicle, a tracked vehicle, and an omni-directional indoor vehicle.  Several 
features of this work have been incorporated in the architecture that is being adopted by 
the Joint Architecture for Unmanned Ground Systems (JAUGS) Working Group. 
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1.  INTRODUCTION  
  

The Center for Intelligent Machines and Robotics (CIMAR), at the University of Florida, 

has worked to develop a series of autonomously navigating vehicles. This work has been 

sponsored by the Air Force Research Laboratory at 

Tyndall Air Force Base, Florida.  A Kawasaki Mule 

500 all-terrain vehicle, named the Navigation Test 

Vehicle, was first modified for computer control in 

1991 for the purpose of providing a test and 

development platform (see figure 1.).  The 

technology developed on this platform has since 

been applied to several vehicles including heavy 

construction equipment.  

The original vehicle control architecture was primarily based on a shared memory 

(blackboard) approach, implemented through the use of multiple 68030 CPU boards running on a 

VME backplane.  The use of shared memory provided the advantage of running critical real-time 

procedures in parallel and having their resultant data available to all other programs immediately 

via the VME backplane.  This is the key advantage of using shared memory.   

The problem with shared memory is that it tightly couples all of the sub-systems in an 

indirect way making programming errors in the system difficult to trace.  The shared or common 

memory area becomes unmanageable in that a piece of data can be over written in error with 

impact somewhere else in the system.  The result is a system that becomes difficult to maintain 

or upgrade as new features and hardware are added.  In addition, the integration of all the 

systems into one backplane makes it difficult to use any one sub-system on a different project.  

For example to apply the position system to another autonomous vehicle would most certainty 

require significant changes to both hardware and software. 

Figure 1:  Navigation Test Vehicle 
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From the experience gathered over the past years of work, a list of four architecture 

design requirements has emerged.  The architecture should: 

1. be comprised of a set of well defined, self contained  sub-modules 

2. exhibit implementation independent well defined software interfaces 

3. have the ability to scale up a system’s functionality with different combinations of modules 

4. provide a stepping stone toward the development of a standard architecture 

The focus of this paper is to present a state-of-the-art modular architecture which addresses the 

above design considerations.   

2.  ARCHITECTURE  
 

The task of autonomous navigation can be broken down into five sub-tasks as follows: 

    1. Vehicle positioning 

    2. Vehicle Specific Actuator Control 

    3. Path Planning  

    4. Perception of the Environment 

    5. Path Execution and Obstacle Avoidance  

The proposed architecture isolates these five, functionally cohesive, sub-tasks into self contained 

modules with well defined interfaces.  The architecture, depicted in Figure 2, consists of a 

Position System (POS), Primitive Driver (PD), Path Planner (PLN), Detection and Mapping 

System (DMS), and an Autonomous Control Unit (ACU). 

The most important part of defining an architecture is specifying the messaging or 

interfaces between componets.  The interface defines what information goes in and what 

information comes out, thereby indirectly specifying the function of the component.  It is 

important to note that the interface does not and should not specify how the function is carried 

out.  This allows the designer to be flexible in the choice of the hardware and software to best 

suit the module’s functions.  This paper will now proceed with a brief discussion of each 

component including its function and the associated software interface. 
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2.1 Position System (POS)  
           

The function of this module is to provide position and orientation data to the Autonomous 

Control Unit.  The position system, like all of the modules, exists as a stand alone, self-contained 

unit.  The interface has been developed in a generic manner (independent of its implementation) 

so that when new technology becomes available it can be plugged in without changing the host 

system’s software.   

The contents of the position message consist of a set of generic parameters including 

latitude, longitude, elevation, roll, pitch, and yaw.  These parameters are sufficient to completely 

describe the vehicle’s pose.  Just as important however, is the absence of any implementation 

specific data such as GPS or INS specific parameters that would only be useful for a system that 

was based on that type of implementation.  It is also important to note that the position system 

interface reports the position data in only one single format.  Since the global coordinates are 

sufficient to describe any possible vehicle pose it is not necessary to support a separate set of 

pose data to describe a relative position.  Providing for more than one form of data output from 

any given module can lead to exponential complexity as data flows upward and outward 

throughout the system.   

 
Host  
Communication 

Auton. Control Unit 

Path 
Planner 

Position 
System 

Detection & 
Mapping 
System 

Primitive 
Driver 

Figure 2:  Modular and Scalable Architecture 
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One example of a position system that has been implemented includes an inertial 

navigation system (INS) and a differential global position system (DGPS).  The INS offers 

position data at a 10Hz rate but tends to drift over time.  The DGPS provides position data 

without drift but only at a 1Hz rate and is subject to availability of the orbiting satellites.  

Through the application of a Kalman Filter, the system is able to maintain accuracies equal to 

that of the DGPS and an output rate of 10Hz while smoothing through temporary loss of DGPS 

signals (see Wit, et al., 1996).  An average position accuracy of 6cm is obtained with a standard 

deviation of 3cm.  A summary of the messaging interface for the Position System is listed in 

Table 1. 

 
2.2 Primitive Driver (PD) 
           

The Primitive Driver accepts higher level commands from the Autonomous Control Unit 

that describe how the vehicle is to move.  It then translates these commands into the low-level 

commands that directly control the vehicle actuators to achieve the desired motion.  Only those 

vehicle actuators that are directly related to vehicle mobility are controlled by the Primitive 

Driver.  A summary of the messaging interface for the Primitive Driver is listed in Table 2. 

A significant feature of the Primitive Driver system is the fact that mobility commands 

are specified by only two wrench commands, i.e. a propulsive wrench and resistive wrench.  The 

propulsive wrench specifies how the vehicle should move while the resistive wrench specifies 

how the vehicle should act to impede movement. 

Figure 3 shows a vehicle with a coordinate system attached.  In this example the X axis is 

in the forward direction of travel, the Z axis is downward, and the Y axis is defined based on a 

right handed coordinate system.  It is assumed that the origin of this coordinate system is located 

at the vehicle center of mass.  It is important to point out however that exact location of the 

center of mass of the vehicle will not be required. 
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The six coordinates of the propulsive wrench can be written as 

 Òp = {fpx, fpy, fpz ; mpx, mpy, mpz} (1) 

while the six coordinates of the resistive wrench can be written as 

 Òr = {f rx, fry, frz ; mrx, mry, mrz} . (2) 

Since the reference point is assumed to be located 

at the vehicle center of mass, the force 

components of the propulsive wrench specify a 

net force that is to be applied to the vehicle in 

order to cause it to translate.  The moment 

components specify a net moment that will cause 

the vehicle to rotate or change orientation.  For 

the resistive wrench, the force and moment 

components specify how the vehicle is to act to 

resist motion.  When a vehicle system receives 

the propulsive and resistive wrench commands, the vehicle actuators must act in a way as to 

apply appropriate translational and rotational propulsion or resistance.  This approach represents 

a general means of implementing vehicle control commands. 

The significant feature of this approach is to avoid having to have different motion 

commands for different vehicles, such as steering and throttle commands for a steered-wheeled 

vehicle, and left track / right track commands for a tracked vehicle.  Without a generic definition 

for desired motion it would be necessary for the the architecture to have a plethora of vehicle 

commands such as ‘desired steering wheel position’, ‘desired throttle position’, ‘desired left 

track velocity’, ‘desired right track velocity’, and ‘desired brake setting’ to name a few.  The 

number of commands that would have to be included in the architecture documentation 

potentially was limitless since new commands would have to be added for each new mobility 

z 

x y 

Figure 3:  Vehicle Coordinate System 
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concept.  Only a small number of these commands would be relevant to any one particular 

vehicle. 

 
2.3 Path Planner (PLN) 
 

The function of this module is to obtain a sequence of via-points or sub-goals (See Jarvis, 

1983; Rankin, et al., 1996).  These sub-goals will direct the robot from a specified start pose to a 

specified goal pose in a manner as to avoid collision with all known obstacles while minimizing 

the total distance traveled.  A summary of the messaging interface for the planner is listed in 

Table 3. 

 

2.4 Detection and Mapping System (DMS) 
           

The Detection and Mapping System, like the others, is developed as a stand alone plug-in 

module with a hardware independent interface.  The function of this module is to build and 

maintain a representation of the environment (Area Map) and to make information contained in 

the Area Map available to the host.  The DMS report consists of changes to the Area Map.  

When the DMS is given a request Area Map, it responds with a message that includes every 

change to the Area Map since the specified time.  If the time is given as zero, then the DMS will 

transmit the entire Area Map.  After the first report is sent, the DMS will continue to send Area 

Map reports at the rate specified in the Request Area Map message.  The Area Maps that are sent 

after the first one consist only of updates since the last report (includes obstacles added or 

deleted).    

The DMS that has been implemented combines data from both ultrasonic and stereo 

vision sensors.  An array of 24 ultrasonic transducers has been utilized to provide range data up 

to 7 meters at approximately 3Hz.  In addition, an obstacle detection system based on stereo 

vision (a system built by the NASA Jet Propulsion Laboratory) has been used to provide data at 

longer ranges (up to 30) meters at approximately 2Hz  (see Matthies, et al., 1996).  Data from 
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both obstacle detection systems are fused together and shipped out to the host system in the form 

of an Area Map.  A summary of the messaging interface for the DMS is listed in Table 4. 

 
2.5 Autonomous Control Unit (ACU) 
 

The Autonomous Control Unit (ACU) can be thought of as the integrator of the sub-

modules and is the higher order agent that achieves mobility.  The function of the ACU is to 

respond to high-level commands from the host (typically an Operator Control Unit) and 

coordinate the sub-modules to achieve autonomous path execution.  This includes communi-

cation with all sub-modules and moving the vehicle along the planned path while avoiding both 

expected and unexpected obstacles.  The sub-tasks of the ACU include the following: 

    - Process commands from the host 

    - Read input from the Position Module and the Detection and Mapping System 

    - Request the Path Planner to plan a path to the goal 

    - Maintain the current sub-goal in following the path 

    - Perform path execution based on combined proportional/integral (PI) and pure 
pursuit control methods 

    - Perform reflexive obstacle avoidance based on the Area Map provided in real time 
from the DMS 

    - Perform path re-planning (using the Planner Module) to avoid “long range” obstacles 

    - Output the propulsive and resistive wrench commands to the Primitive Driver 
module 

A summary of the messaging interface for the Autonomous Control Unit is listed in Table 5. 

 
  
3. IMPLEMENTATION AND CONCLUSIONS  
 

A modular, scalable architecture has been presented.  This architecture has been 

implemented on the Navigation Test Vehicle shown in Figure 4 as well as the All-Purpose 

Remote Transport System (ARTS) and a Cybermotion omni-directional robot shown in Figures 5 

and 6.  The experience of applying the modular architecture to the ARTS demonstrated the 
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advantages of the modular approach.  Two teams of developers were able to implement 

autonomous navigation of the ARTS in a period of six weeks from the start of the project.  One 

group at Tyndall Air Force Base designed and implemented the Primitive Driver component on 

the ARTS so that the system would respond appropriately to propulsive and resistive wrench 

commands.  The second group assembled ACU and POS modules that were duplicates of the 

Figure 6:  Cybermotion Robot 

Figure 4:  Navigation Test Vehicle with Modular System Installed 

Figure 5:  NTV and ARTS Autonomous 
Vehicles 
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same modules running on the NTV.  When the duplicate modules were installed on the ARTS, 

the team was able to effect autonomous navigation within twenty minutes.  Only one software 

modification had to be made during the integration process.  This was to improve the path 

tracking accuracy of the ARTS by changing control tuning parameters on the ACU that govern 

how the propulsive and wrench commands are generated in response to path tracking errors 

This implementation serves to demonstrate the advantages and flexibility of a modular 

hardware architecture that is integrated via a standard messaging protocol.  This approach will 

allow new hardware and sensor systems to be added to any autonomous vehicle so that it may be 

configured and made operational in a minimal amount of time. 

 
 
 

4. REFERENCES 
 

Jarvis, R.A., “Growing Polyhedral Obstacles for Planning Collision-Free Paths,” The 
Australian Computer Journal, 15(3), 1983, pp. 103-111. 

Rankin, A., and Crane, C., “Multi-Purpose Off-Line Path Planning Based on an A* 
Search Algorithm,”Proceedings of the 1996 ASME Mechanisms Conference, Irvine, Ca., 
Published on CD-ROM. 

Wit, J.S., Crane, C.D., Armstrong, D.G., “Evaluation of an Integrated Inertial Navigation 
System and Global Positioning System Under Less Than Optimal Conditions,” Proceedings of 
the Sixth International Symposium on Robotics and Manufacturing (ISRAM ‘96), Volume 6, 
ASME Press, Montpellier, France, May 1996, pp. 649-654. 

Matthies, L., Brown, E.. "Machine Vision for Obstacle Detection and Ordnance 
Recognition," Annual meeting of the Association for Unmanned Vehicle Systems (AUVSI'96), 
Orlando, FL, July 1996. 
 
 
 
5. ACKNOWLEDGEMENTS  

The authors would like to gratefully acknowledge the support and encouragement of 

personnel of the Air Force Research Laboratory at Tyndall Air Force Base, Florida. 



  11 

Table 1:  Position System Messaging Interface  

 
 
 

Input Commands 
Reinitialize:  Commands the Position System to reinitialize each sub-system in the proper sequence to 

bring the system up to a state of readiness.  The Position System must be initialized for the 
Position Message to be valid (with the exception of the two status bytes which are always 
valid). 

 
 Standby:  Commands the Position System to place each of its sub-systems in a state where they are 

ready to be initialized. 
 
 Set Config.: This command is used to set the configuration of the Position System 
 
 Shutdown: Commands each of the sub-systems to shutdown in the proper sequence. 
 
Input Request 
 Request Position 
 Request Status 
 Request Configuration 
 
Output Messages 
 Position:  Latitude   Theta X  Velocity X Omega X Time Stamp 
   Longitude        Theta Y          Velocity Y         Omega Y         Status Bytes 
   Elevation          Theta Z           Velocity Z         Omega Z         Data Validity 
   Position RMS     Attitude RMS    Velocity RMS     Omega RMS   
 
 Status:  Startup:    Indicates the system has just been powered up 
   Busy:    Indicates the system is currently processing the last command 
   Standby:   Indicates the following statements apply: 
        - The system is ready to be reinitialize 
        - The Position Message is not valid (with the exception of the two status 
           bytes that are always valid) 
   Ready:     Indicates that the system is initialized and is operational 
   Problem: Indicates that a self-correcting problem has occurred and the problem is 
         being corrected internally.  This problem requires no input from the host 
   Error:     Indicates that a problem has occurred that the system could not resolve.  An 

error requires the intervention of the host to be resolved. 
   Failure:     Indicates that the system has failed and will not recover.  
 
   Note: Each of the five modules uses this same status layout 
 
 Configuration: Text Description of the system & component identification 
   Reference Latitude, Longitude, and Elevation 
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Table 2:  Primitive Driver Messaging Interface 
 

Input Commands 
Reinitialize:  Commands the Primitive Driver to reinitialize each sub-system in the proper sequence to 

bring the system up to a state of readiness.  Once initialized, the Primitive Driver will 
respond to commands that cause or resist vehicle motion.  The Primitive Driver must be 
initialized for vehicle motion to occur. 

 
 Standby:  Commands the Primitive Driver to place each of its sub-systems in a state where they are 

ready to be initialized. 
 

Propulsive This command, along with the Resistive Wrench Command, tells the vehicle how to 
 Wrench   move.  A wrench is Force-Moment vector made up of six components as shown below: 
    % Force X    % Moment X 
    % Force Y    % Moment Y 
    % Force Z    % Moment Z 

The propulsive Wrench is applied to the center of mass point of the vehicle and is used 
to propel the vehicle.  The force component of the wrench acts to translate the vehicle 
while the moment component acts to rotate the vehicle.  Essentially we are telling the 
Primitive Driver how we want to push on the vehicle were the percentage indicates the 
magnitude of the push.  For example: if the vehicle were a car, then the Primitive Driver 
would map a 50% Force X to the throttle and transmission  (50% throttle and 
transmission in drive) and Moment Z would map directly to the steering.  The remaining 
parameters would not be used. 

 
 Resistive  This command is similar to the Propulsive Wrench however the Resistive Wrench acts 
 Wrench   to impede vehicle motion.  The resistive Wrench uses the same six parameters as the 

Propulsive Wrench.  For example, if the vehicle were a car, then the a 20% Force X 
command would map directly to the brake (brake depressed 20%). 

 
 Shutdown: Commands each of the sub-systems to shutdown in the proper sequence. 
 
Input Request 
 Request Status 
 Request Config. 
 
Output Messages 
 Status:  Startup:     Indicates the system has just been powered up 
   Busy:     Indicates the system is currently processing the last command 
   Standby:    Indicates the following statements apply: 
        - The system is ready to be reinitialize 
        - The system will not respond to commands that cause or resist motion 
        - The vehicle should remain stationary 
        - The vehicle actuators should not move 
        - From a mobility standpoint, the vehicle should be considered safe 
   Ready:     Indicates that the system is initialized and is operational 
   Problem:    Indicates that a self-correcting problem has occurred and the problem is 
         being corrected internally.  This problem requires no input from the host 
   Error:      Indicates that a problem has occurred that the system could not resolve.  An 

error requires the intervention of the host to be resolved. 
   Failure:     Indicates that the system has failed and will not recover.  
 Configuration: Text Description of the system & component identification 
   Vehicle Length   Max Speed X   Max Speed -X   Max Omega X 
   Vehicle Width   Max Speed Y   Max Speed -Y   Max Omega Y 
   Vehicle Height   Max Speed Z   Max Speed -Z   Max Omega Z 
   Turning Radius   Max Theta X   Max Theta Y 
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Table 3:  Path Planner Messaging Interface 
 
 
 
 
 

Input Commands 
Reinitialize:  Commands the Path Planner to reinitialize to bring the system up to a state of readiness. 

This may include updating the systems map database and performing some 
preprocessing of that information. 

 
 Set Config.: This command is used to set the configuration of the Path Planner. 
 
 Shutdown: Commands each of the sub-systems to shutdown in the proper sequence. 
 
Input Request 
 Request Path This request would include such information such as the start and goal positions if a “go-

to-goal” plan is desired or the corner points of a bounded area if a “sweep plan” is 
desired.  In either case the latitude, longitude, elevation, roll, pitch, and yaw of each 
point would be specified. 

 Request Status  
 Request Config. 
 
Output Messages 
 Planned Path: Includes the latitude, longitude, elevation, roll, pitch, and yaw of each point in the path 

In addition, information such as the path type, path length, number of sub-goals, and 
path status are reported. 

 
 Status:  Startup:     Indicates the system has just been powered up 
   Busy:     Indicates the system is currently processing the last command 
   Standby:    Indicates the system is ready to be reinitialized 
   Ready:     Indicates that the system is initialized and is operational 
   Problem:    Indicates that a self-correcting problem has occurred and the problem is 
         being corrected internally.  This problem requires no input from the host 
   Error:      Indicates that a problem has occurred that the system could not resolve.  An 

error requires the intervention of the host to be resolved. 
   Failure:     Indicates that the system has failed and will not recover.  
 
 Configuration: Includes a text description of the system as well as the vehicle length, width, height, and 

turning radius.  
 
The Path Planner system may also request a World Modeling System Area Map Report as defined by the World 
Modeling System. 
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Table 4:  Detection and Mapping System Messaging Interface 
 
 
 
 
 
 

Input Commands 
Reinitialize:  Commands the DMS to reinitialize each sub-system in the proper sequence to bring the 

system up to a state of readiness.  Once initialized, the DMS will respond to request for 
the Area Map. 

 
 Standby:  Commands the Detection and Mapping System to place each of its sub-systems in a state 

where they are ready to be initialized. 
 
 Shutdown: Commands each of the sub-systems to shutdown in the proper sequence. 
 
Input Request 
 Request Area Map 
 Request Status 
 Request Config. 
 
Output Messages 
 Area Map This message would include the number of obstacles, addition or deletion, ID#, 

confidence, time stamp, classification (tree), type (oak), class & type confidence, and the 
vertices of each obstacle in global coordinates.  

 
 Status:  Startup:     Indicates the system has just been powered up 
   Busy:     Indicates the system is currently processing the last command 
   Standby:    Indicates the system is ready to be reinitialized 
   Ready:     Indicates that the system is initialized and is operational 
   Problem:    Indicates that a self-correcting problem has occurred and the problem is 
         being corrected internally.  This problem requires no input from the host 
   Error:      Indicates that a problem has occurred that the system could not resolve.  An 

error requires the intervention of the host to be resolved. 
   Failure:     Indicates that the system has failed and will not recover.  
 
 Configuration: Text Description of the system & component identification 
 
The Detection and Mapping System may also request a Position Message as defined by the Position System.  The 
DMS would use this information to report all Map coordinates in a global sense. 
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Table 5:  Autonomous Control Unit Messaging Interface 
 
 
 
 

Input Commands 
 General:  All of the input and output messages from the other systems may pass through the ACU. 

For example, the host may request a position message from the ACU.  The ACU would 
then forward this message to the Position System and subsequently forward the Position 
Message back to the host. 

 
Reinitialize:  Commands the ACU to reinitialize itself to bring the system up to a state of readiness. 

The ACU will also verify that the Position System, Path Planner, Primitive Driver, and 
World Modeling System are all properly initialized. 

 
 Standby:  Commands the ACU to place all of its sub-systems in a state where they are ready to be 

initialized.  A standby command will be sent to the Position System, Path Planner, 
Primitive Driver, and World Modeling System. 

 
 Execute Path: Commands the ACU to begin moving along the planned path.  The planned path is either 

sent with this message or the currently loaded path is used. 
 
 Pause:  Commands the vehicle to stop path execution.  The ACU’s sub-systems will remain in 

the active (ready) state so that path execution can continue immediately upon receipt of 
the ACU’s continue message.  If a more secure, stopped, state is desired than the 
Standby message should be used as this will place all of the ACU’s sub-systems in a safe 
(Standby) mode. 

 
 Continue: Continues path execution from the point that it had previously left off. 
 
 Set Mode: Sets the mode of operation such as safe, autonomous, teleop, or teach mode. 
 
 Shutdown: Commands each of the sub-systems to shutdown in the proper sequence. 
 
Output Messages 
   Startup:     Indicates the system has just been powered up 
   Busy:     Indicates the system is currently processing the last command 
   Standby:    Indicates the system is ready to be reinitialize 
   Ready:     Indicates that the system is initialized and is operational 
   Problem:    Indicates that a self-correcting problem has occurred and the problem is being 

corrected internally.  This problem requires no input from the host 
   Error:     Indicates that a problem has occurred that the system could not resolve.  An 

error requires the intervention of the host to be resolved. 
   Failure:     Indicates that the system has failed and will not recover. 


